\qquad Solutions

Section: \qquad

Net Area and Integrals

1. The integral $\int_{a}^{b} e^{-x^{2}} d x$ is important in statistics, ${ }^{1}$ but it is infamously hard to compute. Many statistics textbooks include a table which lists the value of the integral for different values of a and b. We will use Reimann Sums to generate one of these approximations.
(a) Express the integral $\int_{0}^{1} e^{-x^{2}} d x$ as the limit of its Right Reimann Sums.

$$
\begin{aligned}
\int_{0}^{1} e^{\left(-x^{2}\right)^{0}} d x=\lim _{n \rightarrow \infty}[\underbrace{\sum_{\substack{\text { rectangles }}}^{\sim}}_{\substack{\text { area approximated } \\
\sum_{i=1}^{n} e^{-\left(x_{i}\right)^{2}} \cdot \Delta x}} \text { where } \Delta x=\frac{1-0}{n}=\frac{1}{n} \\
\text { and } x_{i}=a+i \cdot \Delta x \\
x_{i}=\frac{i}{n}
\end{aligned}
$$

(b) Approximate $\int_{0}^{1} \overline{e^{-x^{2}}} d x$ using Right Sums and $n=1$. Use a calculator to simplify.

$$
\begin{aligned}
R_{1} & =f\left(x_{1}\right) \Delta x \quad \Delta x=\frac{2-0}{1}=1 \\
& =e^{-(1)^{2}} \cdot 1 \approx 0.36788 \\
R_{2} & =f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x \quad \Delta x=\frac{1-0}{2}=\frac{1}{2} \\
& =e^{-(.5)^{2}}(.5)+e^{-(1)^{2}}(.5) \approx 0.57334
\end{aligned}
$$

(c) Approximate $\int_{0}^{1} e^{-x^{2}} d x$ using Right Sums and $n=2$. Use a calculator to simplify.

(d) Approximate $\int_{0}^{1} e^{-x^{2}} d x$ using Right Sums and $n=4$. Use a calculator to simplify.

$$
\begin{aligned}
R_{4} & =f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x \\
& =e^{-(.25)^{2}}(.25)+e^{-(.05)^{2}}(.25)+e^{-(.75)^{2}}(.25)+e^{-(1)^{2}}(.25) \\
& \approx 0.66397
\end{aligned}
$$

$$
\Delta x=\frac{1-0}{4}=0.25
$$

(e) Approximate $\int_{0}^{1} e^{-x^{2}} d x$ using Right Sums and $n=8$. Use a calculator to simplify.

$$
\begin{aligned}
& H+1+1+1 \\
& 0 \\
& \Delta x=\frac{1-0}{8}=.125
\end{aligned}
$$

$$
\begin{aligned}
R_{8} & =f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x+f\left(x_{5}\right) \Delta x+f\left(x_{6}\right) \Delta x+f\left(x_{7}\right) \Delta x+f\left(x_{8}\right) \Delta x \\
& =(.125)\left[e^{-(.125)^{2}}+e^{-(.25)^{2}}+e^{-(.375)^{2}}+e^{-(.5)^{2}}+e^{-(.675)^{2}}+e^{-(.75)^{2}}+e^{-(.875)^{2}}+e^{-(1)^{2}}\right]
\end{aligned}
$$

≈ 0.70636
(f) How do these compare to the correct value of $\int_{0}^{1} e^{-x^{2}} d x=.7468241 \ldots$?
they get closes as n gets bigger!
${ }^{1}$ This and other similar integrals are needed to compute the probability of events that follow a normal distribution. See, for example, http://en.wikipedia.org/wiki/Standard_normal_distribution\#Cumulative_distribution.
\qquad
\qquad
2. What is the graphical meaning of $\int_{0}^{1} x+2 d x$? Compute this area geometrically.

$$
\begin{aligned}
\int_{0}^{1}(x+2) d x & =\frac{1}{2} \cdot 1 \cdot 1+\frac{1}{2} \cdot 2 \cdot 1 \\
& =\frac{1}{2}+1 \\
& =1.5
\end{aligned}
$$

3. What is the graphical meaning of $\int_{0}^{1} 2 x-1 d x$? Compute this area geometrically.

$$
\begin{aligned}
\int_{0}^{1}(2 x-1] d x & =(\text { area above })-(\text { area below }) \\
& =\frac{1}{2} \cdot \frac{1}{2} \cdot 1-\frac{1}{2} \cdot \frac{1}{2} \cdot 1
\end{aligned}
$$

$$
=\frac{1}{4}-\frac{1}{4}
$$

4. What is the graphical meaning of $\int_{0}^{2} 2 x-1 d x$? Compute this area geometrically.

$$
\begin{aligned}
& \text { Mrdidx } \\
& =\frac{1}{2} \cdot 3 \cdot \frac{3}{2}-\frac{1}{2} \cdot 1 \cdot \frac{1}{2}
\end{aligned}
$$

$$
=\frac{9}{4}-\frac{1}{4}=\frac{8}{4}=2
$$

Name: \qquad Section: \qquad

5. Answer the following Yes or No

(a) Can you distribute integrals across integrals?
i.e. is $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$?
Yes No
(b) Can you pull constants through integrals?
ie. is $\int_{a}^{b}(c \cdot f(x)) d x=c \cdot\left(\int_{a}^{b} f(x) d x\right)$?
Yes No
(c) Can you distribute integrals across products?

Yes

6. Suppose that the function $f(x)$ is given by the following graph.

Let $A(x)=\int_{0}^{x} f(t) d t$. Compute the following
(a) $A(1)=\frac{1}{2}$
(b) $A(2)=\frac{1}{2}+\frac{1}{2}=1$
(c) $A(4)=\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-1=\frac{-1}{2}$

Remember that $A^{\prime}(x)=\frac{d}{d x}\left[\int_{0}^{x} f(t) d t\right]=f(x)$.
(d) $A^{\prime}(1)=f(1)=1$
(e) $A^{\prime}(2)=f(2)=0$
(f) $A^{\prime}(4)=f(4)=-1$
\qquad
\qquad

Computing Integrals Quickly

1. $\int_{-1}^{1}\left[e^{x}-4 x+6 x^{2}\right] d x$

$$
\begin{aligned}
& =\int_{-1}^{1} e^{x} d x-4 \int_{-1}^{1} x d x+6 \int_{-1}^{1} x^{2} d x \\
& =\left[e^{x}-4 \cdot \frac{x^{2}}{2}+6 \cdot \frac{x^{3}}{3}\right]_{-1}^{1}=\left[e^{x}-2 x^{2}+2 x^{3}\right]_{-1}^{1} \\
& =\left[e^{1}-2(1)^{2}+2(1)^{3}\right]-\left[e^{-1}-2(-1)^{2}+2(-1)^{3}\right] \\
& \frac{=(e-2+2)}{\frac{x^{2}+x+1}{x} d x} \\
& =\int_{1}^{2} \frac{x^{2}}{x}+\frac{x}{x}+\frac{1}{x} d x=\int_{1}^{2}\left[x+1+\frac{1}{x}\right] d x \\
& =\left[\frac{x^{2}}{2}+x+\ln |x|\right]_{1}^{2} \\
& =\left(\frac{4}{2}+2+\ln |2|\right)-\left(\frac{1}{2}+1+\ln |1|\right) \\
& =4+\ln |2|-1.5+0 \leq 2.5+\ln (2) \\
& \text { 3. } \int_{-1}^{1}\left(x^{2}+3\right)(x-1) d x \\
& =\int_{-1}^{1} x^{3}-x^{2}+3 x-3 d x \\
& =\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}+\frac{3 x^{2}}{2}-3 x\right]_{-1}^{1} \\
& \begin{array}{l}
=\left(\frac{1}{4}-\frac{1}{3}+\frac{3}{2}-3\right)-\left(\frac{(-1)^{4}}{4}-\frac{(-1)^{3}}{3}+\frac{3(-1)^{-1}}{2}\right. \\
=\left(\frac{1}{4}-\frac{1}{3}+\frac{3}{2}-3\right)-\left(\frac{1}{4}+\frac{1}{3}+\frac{3}{2}+3\right)
\end{array} \\
& =0+\frac{2}{3}+0+-6=-\frac{2}{3}-6
\end{aligned}
$$

Name: \qquad
\qquad
4.
\qquad
$\int_{0}^{3} x \cdot \sqrt{x^{2}+16} d x$

$$
\frac{8 u}{2}
$$

$$
\left(\begin{array}{l|lll}
u=x^{2}+16 & x=0 \Rightarrow u=0^{2}+16=16 \\
\frac{d u}{d x}=2 x & x=3 \Rightarrow u=3^{2}+16=25 \\
\frac{d u}{2}=x d x & \Rightarrow &
\end{array}\right)
$$

$$
=\int_{16}^{25}(u)^{\frac{1}{2}} \frac{d u}{2}=\frac{1}{2} \int_{16}^{25} u^{\frac{1}{2}} d u
$$

$$
=\frac{1}{2} \cdot\left[\frac{u^{3 / 2}}{3 / 2}\right]_{16}^{25}=\frac{1}{2}\left[\frac{(\sqrt{25})^{3}}{3 / 2}-\frac{(\sqrt{16})^{3}}{\frac{3}{2}}\right]=\frac{5^{3}}{3}-\frac{4^{3}}{3}=\frac{61}{3}
$$

5. $\int_{0}^{5} \frac{1}{x+1} d x$

$$
\begin{aligned}
& \left(\begin{array}{l}
u=x+1 \\
\frac{d u}{d x}=1 \\
d u=d x
\end{array}\right. \\
& =\int_{1}^{6} \frac{1}{u} d u=0 \Rightarrow x=1 \\
& x=5 \Rightarrow \quad u=6 \\
& x=[\ln |u|]_{1}^{6}=\ln (6)-\ln (1)
\end{aligned}
$$

6. $\int_{0}^{1} x e^{x^{2}+1} d x$

$$
\begin{aligned}
& \left(\begin{array}{l|l}
u=x^{2}+1 & x=0 \Rightarrow u=0^{2}+1=1 \\
\frac{d u}{d x}=2 x & x=1 \Rightarrow u=1^{2}+2=2 \\
\frac{d u}{2}=x d x & \Rightarrow
\end{array}\right) \\
= & \int_{1}^{2} e^{u} \cdot \frac{d u}{2}=\left[\frac{1}{2} e^{u}\right]_{1}^{2}=\frac{1}{2}\left[e^{2}-e^{1}\right]
\end{aligned}
$$

\qquad
\qquad
7. Compute $\int_{1}^{2} \frac{x^{2}}{x^{3}+1} \therefore \frac{d u}{3 x^{2}}$

$$
\left\{\begin{array}{l|l}
x=x^{3}+1 \\
\frac{d u}{d x}=3 \cdot x^{2} \\
d u=3 x^{2} \cdot d x \\
d x=\frac{d u}{3 x^{2}} & x=2 \Rightarrow u=1^{3}+1=2 \\
& x=2^{3}+1=9
\end{array}\right.
$$

$$
\begin{array}{r}
=\int_{2}^{9} \frac{x^{2}}{u} \cdot \frac{d u}{3 x^{2}}=\frac{1}{3} \cdot \int_{2}^{9} \frac{1}{u} d u=\left[\frac{1}{3} \cdot \ln (u)\right]_{2}^{9} \\
=\frac{1}{3} \cdot \ln (9)-\frac{1}{3} \cdot \ln (2)
\end{array}
$$

Cannot do u-sub.
must rewrite.

$$
\begin{aligned}
& =\int_{1}^{2} \frac{x^{3}}{x^{2}}+\frac{1}{x^{2}} d x \\
& =\int_{1}^{2} x+x^{-2} d x \\
& =\left[\frac{x^{2}}{2}+\frac{x^{-1}}{-1}\right]_{1}^{2} \\
& =\left[\frac{x^{2}}{2}-\frac{1}{x}\right]_{1}^{2}=\left(\frac{4}{2}-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{1}\right)=2
\end{aligned}
$$

\qquad
\qquad
9. Compute $\int\left[\frac{x}{x^{2}+4}+\frac{x^{2}+4}{x}\right] d x$
must split into two parts

\qquad
\qquad

The Area Between Curves

1. Find the area between $y=x^{2}+1$ and $y=3$ on $[-1,1]$.

$$
\int_{-1}^{1}\left[3-\left(x^{2}+1\right)\right] d x
$$

$$
=\int_{-1}^{1}\left[2-x^{2}\right] d x
$$

$$
=\left[2 x-\frac{x^{3}}{3}\right]_{-1}^{1}=\left(21-\frac{(1)^{3}}{3}\right)-\left(2(-1)-\frac{(-1)^{3}}{3}\right)=\left(2-\frac{1}{3}\right)-\left(-2-\frac{1}{3}\right)
$$

2. Find the area between $y=x^{2}+6 x-2$ and $y=2 x+3$ on $[0,2]$.

$$
=4-\frac{2}{3}
$$

3. Find the area enclosed by $y=x^{3}$ and $y=4 x$.

Intersect when

$$
\begin{aligned}
& \underset{\text { ardor }}{\text { end }}=\int_{-2}^{0}\left[x^{3}-4 x\right] d x \\
& +\int_{0}^{-2}\left[4 x-x^{3}\right] d x \\
& x^{3}=4 x \\
& \downarrow> \\
& \text { when } x=0 \\
& \text { When } x^{2}=4 \\
& =\left[\frac{x^{4}}{4}-2 x^{2}\right]_{-2}^{0}+\left[2 x^{2}-\frac{x^{4}}{4}\right]_{0}^{2} \\
& x= \pm 2 \\
& =(0-0)-\left(\frac{(-2)^{2}}{4}-2(-2)^{2}\right)+\left(2 \cdot 2^{2}-\frac{2^{4}}{4}\right)-(0-0) \\
& =0-(1-8)+{ }^{6}(8-1)-0 \\
& =7+7=14 \Leftarrow
\end{aligned}
$$

\qquad Section: \qquad

Applications to Business Concepts

1. Suppose that the marginal cost $C^{\prime}(x)$ function is graphed below.

Suppose also that that $C(0)=2$.
(a) Compute the total cost of selling 2 units.

$$
\begin{aligned}
\text { Know } \quad \int_{0}^{2} C^{\prime}(x) d x & =\frac{C(2)}{\text { want }}-\frac{C(0)}{\text { given }} \\
\text { geometrically } \int_{0}^{2} C^{\prime}(x) d x & =\frac{1}{2} \cdot 1.1+\frac{1}{2} \cdot 1.2+1.1 \\
& =2.5
\end{aligned}
$$

So $\quad 2.5=C(2)-2$
so $C(2)=4.5$
(b) Compute the total cost of selling 4 units.

$$
\begin{aligned}
\text { Known } \int_{0}^{4} C^{\prime}(x) d x & =C(4)-C(0) \\
\text { goondricaly } \int_{0}^{4} C^{\prime}(x) d x & =\frac{1}{2} \cdot 1.1+\frac{1}{2} 2.1+1.1+3.2 \\
& =8.5
\end{aligned}
$$

So

$$
\begin{aligned}
& 8.5=c(y)-2 \\
& c(y)=10.5 ?
\end{aligned}
$$

\qquad Section: \qquad
2. Suppose that the marginal cost $C^{\prime}(x)$ (dashed) and the marginal revenue $R^{\prime}(x)$ (solid) functions are given by the following graphs.

(a) Suppose that $\int_{0}^{6} C^{\prime}(x) d x=10$ and that $\int_{0}^{6} R^{\prime}(x) d x=20$. Suppose also that $C(0)=5$ and that $R(0)=0$. Approximate the total profit from selling units.

Know

$$
\begin{aligned}
& P(x)=R(x)-C(x) \\
& P^{\prime}(x)=R^{\prime}(x)-C^{\prime}(x)
\end{aligned}
$$

$$
\Rightarrow P(0)=0-5=-5
$$

And

$$
\int_{0}^{6} P^{\prime}(x)=P(6)-P(0)
$$

So

$$
\int_{0}^{6} R^{\prime}(x)-C^{\prime}(x) d x=P(6)-(-5)
$$

so $\quad \int_{0}^{6} R^{\prime}(x) d x-\int_{0}^{6} C^{\prime}(x) d x=P(6)+5$

So

$$
\begin{aligned}
\underbrace{20-10}_{10} & =P(6)+5 \\
P(6) & =5
\end{aligned}
$$

\qquad
\qquad
3. Suppose that the supply price curve (dotted) and the demand price curve (solid) functions are given by the following graphs.
unit price

(a) Use the graph to estimate the equilibrium price and quantity.

$$
\begin{aligned}
& \text { equilibrium quantity }
\end{aligned}=3,000
$$

units
(b) Compute the consumer surplus.

$$
\begin{aligned}
\text { consumer surplus } & =\frac{1}{2} \cdot 3000 \cdot 2000 \\
& =3,000,000
\end{aligned}
$$

(c) (Supplemental). Use the limit definition of the integral to explain why the consumer surplus as computed in (b) is an honest approximation of
"The difference between the maximum amount consumers would be willing to pay and the amount they actually pay for a good" ${ }^{2}$
Aver computed above $=\int_{0}^{3} p(x)-1000 d x$

$$
\begin{aligned}
& \left.=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n}\left(p\left(x_{i}\right)-1000\right) \Delta x\right] \quad \begin{array}{l}
\frac{\operatorname{tn} 23000}{\Delta x}=\frac{3000-0}{3000}=1 \\
x_{i}=i
\end{array}\right]=\sum_{i=1}^{3000}[p(i)-1000] \cdot 1
\end{aligned}
$$

$$
i=1
$$

this is what you get when you add up, for exch i, the amount beyond 1000 that someone would have paid for just the ${ }^{2}$ Microeconomics: Private \& Public Choice, Gwartney et. al. it unit

